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Introduction

The autoimmune condition known as Type 1 Diabetes (T1D) 
is mediated by T cells that specifi cally kill cells that produce 
insulin [1]. The activation and expansion of autoreactive 
CD4+ T cells and CD8+ cytotoxic T cells are thought to be 
facilitated by B cells, an important class of antigen-presenting 
cells that express costimulatory signaling molecules and are 
implicated in the development of T1D [2]. The collapse of the 
immune system is primarily mediated by T helper 1 (Th1) cells. 
Whereas islet infi ltration, immune cell activation, and all other 
mediators contribute to the destruction of pancreatic cells and 
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the overt hyperglycemia observed in this disease [3]. Exogenous 
insulin replacement is the mainstay of current T1D treatment, 
highlighting the need for specifi c immunotherapies to slow 
the progression of the condition and enhance clinical results. 
Genetic and immunopathogenic studies have directly implicated 
cytokines in the pathogenesis of T1D. Cytokines are the primary 
cause of infl ammation and are essential for regulating ongoing 
cell degeneration [4]. Studies in mouse models, particularly in 
Non-Obese Diabetic (NOD) mice, a recognized animal model 
of T1D, have demonstrated that the modulation of cytokine 
function can be a therapeutic strategy, and a number of novel 
cytokines are now identifi ed as potential therapeutic targets 
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for combating immune-mediated cell damage [5]. For these 
uses, cytokines are categorized into three classes: those with 
conventionally anti-infl ammatory roles (e.g., IL-10 and 
TGF-1 band type-2 cytokines), those with conventionally 
pro-infl ammatory roles (e.g., IL-1, IL-6, and TNF-), and 
members of the IL-12 family roles (e.g., IL-21, IL-33, [6]. 
However, the roles played by cytokines in the pathophysiology 
of T1D are currently unclear and complex, especially regarding 
infl ammation and the course of the disease, as a large number 
of dysregulated cytokines become involved in the dynamics of 
cytokine regulation. In the context of T1D, very few cytokines 
have only pro- or anti-infl ammatory effects. For example, a 
blockade of Tumor Necrosis Factor (TNF) action results in the 
preservation of -cell function in children with new-onset T1D 
[7], while IL-2 treatment is able to increase the proportion of 
regulatory T cells (Tregs) without causing any negative side 
effects in patients with T1D [8,9]. These fi ndings highlight the 
crucial role played by cytokines in T1D.

One cytokine, TGF-1, has been associated with the control 
of innate and adaptive immunity and plays a signifi cant role 
in many pathological and physiological responses [10-12]. 
The signaling sequence of the TGF-1 protein is encoded 
by the TGF-1 gene polymorphisms + 869 T/C and/or + 915 
G/C, which have an impact on cytokine production [13,14]. 
According to several studies, the Th2 (IL-4) and Th3 (IL-10 and 
TGF-1) cytokines, as well as the Tr1 and Treg cytokines and 
cytokine antagonists (e.g., IL-1Ra) probably have protective 
roles involving inhibition of the production of Th1 and pro-
infl ammatory cytokines [15]. Other cell types known as Bregs 
have recently been associated with autoimmune diseases, 
transplantation issues, allergies, and infections [16]. Bregs 
produce the inhibitory cytokine IL-10, which downregulates 
the immune response; therefore, Bregs are crucial for 
immune tolerance. The IL-10 produced by Bregs controls 
cell division and growth and takes part in infl ammatory and 
immune reactions. Currently, this cytokine is considered an 
immunosuppressive agent [17], and Breg dysregulation is now 
linked to several autoimmune conditions, including Multiple 
Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and 
Rheumatoid Arthritis (RA) [18,19]. 

The function of the pro-infl ammatory cytokine IL-6 is 
less clear, and concrete evidence is still lacking to support any 
harmful or cytotoxic effect of this cytokine on pancreatic cells 
[20]. T cells and macrophages secrete IL-6, a multifunctional 
cytokine, to activate the immune system during infl ammation 
and infection, including the infl ammatory response linked to 
insulin resistance. A polymorphism in the 5-fl anking region 
of the IL-6 gene on chromosome 7 at position −174 has been 
documented to exert an effect on its secretion and function 
[21]. The aim of the present study was to demonstrate the 
possible role of the TGF-1 (+869T/C), (+915G/C), IL-10 
(-1082 G/A), (-819 C/T), and (-592 A/C), and IL-6 (-174 G/C) 
polymorphisms in the incidence of T1D in Saudi children.

Methodology

T1D and control participants

Eighty children with T1D (32 males and 48 females) were 

gathered from Al-Baha, Saudi Arabia. 80 non-diabetic children 
(35 males and 45 females) without signs of autoimmune 
disease were enlisted as the control group. Both groups had 
the same level of socioeconomic and racial diversity. Patients 
with T1D were identifi ed using the diagnostic criteria of the 
American Diabetes Association [22]. This study complied with 
the Ethical Committee Guidelines for Clinical Researches, and 
following recruitment, consent from guardians was provided 
for genetic analysis. Ethical approval committee of faculty of 
Medicine, Al-Baha University, approval number (REC/PEA/BU-
FM/2023/22).

Sampling and DNA extraction

In accordance with the manufacturer’s instructions, 5 
mL of venous blood was drawn into two sterile vacutainer 
tubes containing tri-potassium ethylene diamine tetra-acetic 
acid (EDTAK3); one tube was used for biochemical analysis 
and the other for the extraction of genomic DNA using the 
Wizard®Genomic DNA Purifi cation Kit (Qiagen, Hilden, 
Germany) [23]. The extracted DNA was subjected to 1% agarose 
gel electrophoresis to verify its presence and integrity. The 
purity and concentration of DNA in all samples were verifi ed 
using a NanoDrop instrument (Thermo Fisher Scientifi c Inc).

Genotyping

According to the manufacturer’s recommendations, the 
subjects’ genotypes were checked for the IL-6174, IL-10 1082, 
819, 592, and TGF-β1+869, +915 polymorphisms using a 
commercially available Cytokine Genotyping Primers Kit (One 
Lambda®, Canoga Park, CA, USA). Individuals were categorized 
into the low-, high-, or intermediate-producer phenotypes 
predicted for these cytokines based on their genotypes, which 
were previously identifi ed [24,25].

Consequently, the PCR-SSP methodology is based on the 
idea that completely matched oligonucleotide primers are 
more effectively used in amplifying a target sequence than 
a mismatched oligonucleotide primer by recombinant Taq 
polymerase than a mismatched oligonucleotide primer. Primer 
pairs are made to only have perfect matches with one or a small 
number of alleles. Perfectly matched primer pairs result in the 
amplifi cation of target sequences (i.e., a positive result) under 
tightly controlled PCR conditions, whereas mismatched primer 
pairs do not (i.e., a negative result) Figure 1. Transforming growth 
factor- (TGF-), interleukin-10 (IL-10), and interleukin-6 
(IL-6) genotyping were the focus of the test assay as shown in 
Table 1. 

After being separated by agarose gel electrophoresis, the 
amplifi ed DNA fragments are stained with ethidium bromide 
and exposed to ultraviolet light to be seen. Based on the 
presence or absence of a particular amplifi ed DNA fragment, 
PCR-SSP results are interpreted. Thermo Fisher Scientifi c’s 
50 bp DNA Ladder was used as a DNA ladder or marker. The 
gel electrophoresis image is then interpreted by using a sheet 
supplied by the manufacturer (WORKSHEET) to fi nd the 
corresponding phenotype for the SNP of each studied gene.
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Statistical analysis

The SPSS version 23 statistical program was used to code 
and input the data. The data were analyzed using the mean, 
standard deviation, and frequency for quantitative and 
categorical variables. The independent t-test was also used to 
compare data between the groups, and the chi-squared (2) and 
Fisher’s exact test were used to compare categorical variables. 
A probability value (p - value) less than 0.05 was considered 
statistically signifi cant [26].

Results

Demographic data

Table 2 displays the demographic and biochemical details of 
the recruited subjects. There were 80 children participants in 
each study group (35 males and 45 females in the control group 
and 32 males and 48 females in the group of T1D patients). The 
age distribution of the participants with T1D and the controls 
was comparable. (8.6 ± 1.5 in the control group and 8.9 ± 1.9 in 
the patient group). 

Cytokine genotype and production

The investigation of genotype and allele frequencies for the 
TGF-β1 (+869T/C), (+915G/C), IL-10 (-1082 G/A), (-819 C/T), 
and (-592 A/C), and IL-6 (-174 G/C) gene polymorphisms 
are listed in Table 3,4. The distribution of CC/GC and TT/
GG genotypes for TGF- with intermediate and high TGF-β1 
production was signifi cantly higher in the patients with T1D 
than in the control group (p < 0.001). The TGF-β1 production 
was signifi cantly higher in the control group than in the patient 
group (p < 0.001), as shown in Table 3, but no signifi cant 
difference was detected in the C/T allele frequency between 
the patients and controls in TGF-1 codon 10. However, a 
signifi cant increase in the G allele was noted in codon 25 among 
control compared to patients (p < 0.001), as shown in Table 4. 

Despite the presence of signifi cant changes between the 
control and patients in the IL-10 genotypes but no signifi cant 
changes in production. The IL-10 allele frequency showed no 
signifi cant difference in the A/G frequency at position -1082, 
whereas a signifi cant increase was observed at position 819 for 
the C allele (p < 0.0001), and at position 592 for the C allele 
among patients and controls (p ≤ 0.0001), as shown in Table 
4. No signifi cant difference was noted in the IL-6 genotype 
between the patients and the controls, also no signifi cant 
difference in the G/C frequency at position -174. However, 
a signifi cant increase in IL-6 with low cytokine production 
phenotype compared to the control was found (p < 0.0001) as 
shown in Tables 3,4.

Table 1: DNA ladder, negative control and TGF-β1, IL-10 & IL-6 alleles represented.

Gel wells Alleles Represented
Product 
Size (bp)

DNA ladder

1 Negative Control (Beta-Globin) 750

2 Transforming Growth Factor Beta codon 10 "T" polymorphism 175

3 Transforming Growth Factor Beta codon 10 "C" polymorphism 175

4 Transforming Growth Factor Beta codon 25 "C" polymorphism 125

5 Transforming Growth Factor Beta codon 25 "G" polymorphism 125

6 Interleukin 10 promotor polymorphism: (-1082A, -819T) 300

7 Interleukin 10 promotor polymorphism: (-1082G, -819C) 300

8 Interleukin 10 promotor polymorphism: (-1082A, -819C) 300

9 Interleukin 10 promotor polymorphism: (-819T, -592A) 250

10 Interleukin 10 promotor polymorphism: (-819C, -592C) 250

11 Interleukin 6 promotor polymorphism: (-174C) 175

12 Interleukin 6 promotor polymorphism: (-174G) 175

Sample: A 
 

  
 
Sample: B  
 

 
 
 Sample: C 
 

 
Figure 1: Photographs of gel electrophoresis A and B represent cytokines genotype 
polymorphism for different patient samples. C represents a sample control. The 
DNA ladder/marker we used was a 50 bp DNA Ladder (Thermo Fisher Scientifi c 
Inc.)

Table 2: Age and HbA1c in patients with T1D and normal healthy controls.

Control Cases p

age 8.6 ± 1.5 8.9 ± 1.9 >0.05

HbA1c 5.1 ± 0.6 8.8 ± 1.7 <0.001*

Data expressed as mean ± SD *: signifi cance <0.05.
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Discussion 

The TGF-1 gene is polymorphic at different sites. A Single 
Nucleotide Polymorphism (SNP) at position +869 in the 
TGF-1 promoter region causes a T-C substitution. The T allele 
is associated with higher concentrations of TGF 1 in plasma 
than is observed for the C allele, and this difference is more 
marked in the homozygous than in the heterozygous condition 
for the T allele, suggesting a gene–dose effect. Therefore, 
the haplotype formed by the genotypes +869 TT and +915 GG 
should result in the highest level of TGF-1 synthesis, whereas 
the other combinations should produce a range of low- or 
intermediate-activity haplotypes.

The SNPs of cytokine genes are associated with both high- 
and low-producer phenotypes [27]; however, a few studies have 
found no correlation between the genotypes and the amounts 
of secreted cytokines [28]. Reuss, et al. [29] reported that only 
50% of the observed variability in cytokine secretion could be 
explained by genetic factors, while environmental factors may 
also exert an effect.

In codon 25, the G-C substitution at position +915 causes 
proline to replace the expected leucine, homozygous G/G 
at position +915 is arg/arg. In codon 10 T-C substitution at 
position +869 causes proline to replace the expected arginine, 
homozygous T/T at position +869 is leu/leu. Higher rates of 
TGF-1 production appear to be independently correlated with 
leucine at codon 10 and arginine at codon 25 [30,31]. 

Additionally, the risk of developing T1D was noticeably 
higher for homozygous for the codon 10 T allele than for the 
codon 10 C allele. TGF-1 may prevent or delay the autoimmune-
mediated destruction of pancreatic islets of Langerhans, as it 
is an immunosuppressive and regulatory cytokine produced by 
many cells, including Th3 and Treg subsets that may decrease 
insulin production [32,33]. TGF-1 C/T allele at codon+869 
(codon 10) did not signifi cantly differ between T1D patients 
and controls, according to our fi ndings., Also, our results 
revealed that one or two copies of the C allele at codon +915 
(codon 25) may increase a person’s risk of developing T1D by 
lowering the level of the anti-infl ammatory TGF- as we fi nd 
a signifi cant increase in the G allele in codon 25 among control 
compared to patients. This fi nding was confi rmed when 
investigating the cytokine gene polymorphism-associated 
phenotype. Moreover, a signifi cant increase was detected in 
patients with low production of TGF-1 compared to controls. 
Only two studies to date [34,35] have suggested that the codon 
10 SNP may play a role in T1D susceptibility. Jahromi, et al. 
[34] discovered a signifi cant association between the disease 
and the TC genotype, but not the TT genotype, in contrast, 
Javor, et al. [35] discovered a signifi cant association between 
T1D development and the TGF-1 codon 10 TT homozygous, 
but not the C allele carriers. Although both studies suggest that 
the TGF-1 SNP plays a part in the propensity to develop T1D, 
more research is required to verify or refute this possibility.

We found no appreciable differences in genotype and 
phenotype between the patients and the controls for the IL-
10 gene polymorphism at positions - 1082 and - 819. These 
fi ndings concur with previously published fi ndings by Reynier, 
et al. [36]. Also, Ide, et al. [37] reached a similar conclusion. A 
Japanese case study found no correlation between IL-10 gene 
promoter region polymorphisms and genetic susceptibility to 
T1D, in agreement with our fi ndings; however, the same group 
in Japan also reported that only patients older than 18 years 
showed a signifi cantly higher frequency of the AA genotype 
[38]. The IL-10 genotypes were thought to play a small role 
in the risk of autoimmune diabetes in Spanish T1D patients 
[39]. A Polish study contradicted our fi ndings by showing an 
association between the IL-10-1082 polymorphism and T1D, 
particularly in the AA genotypes [40]. The idea that these 
genotypes are population-specifi c and may co-segregate with 

Table 3: Genotype and haplotypes frequencies of TGF-β1 (+869T/C), (+915G/C), IL-
10 (− 1082 G/A), (− 819 C/T), (− 592 A/C) and IL-6 (− 174 G/C) SNPs in patients with 
T1D and in normal healthy controls.

 
Control (n = 

80)
Cases (n = 80)

p
No. % No. %

TGF-β1

C/C G/C 0 0 17 21.3 <0.01*
T/C G/C 3 3.8 7 8.8 >0.05
C/C G/G 4 5 8 10 >0.05
T/T G/C 0 0 3 3.8 >0.05
T/C G/G 73 91.3 24 30 <0.001*
T/T G/G 0 0 21 26.3 <0.01*

TGF-β1 Production
Low 0 0 17 21.3 <0.01*

Intermediate 7 8.8 18 22.5 >0.05
High 73 91.3 45 56.3 <0.001*

IL-10

ACC/ACC 11 13.8 11 13.8 >0.05
ACC/ATA 12 15 0 0 <0.05*
ATA/ATA 0 0 15 18.8 <0.01*
GCC/ATA 4 5 21 26.3 <0.05*
GCC/ACC 14 17.5 8 10 >0.05
GCC/GCC 39 48.8 25 31.3 >0.05

IL-10 Production
Low 23 28.8 27 33.8 >0.05

Intermediate 18 22.5 28 35 >0.05
High 39 48.8 25 31.3 >0.05

IL-6
C/C low 4 5 21 26.3 <0.05*
G/C high 23 28.8 12 15 >0.05
G/G high 53 66.3 47 58.8 >0.05

IL-6 Production
Low 4 5 21 26.3

<0.05*
High 76 95 59 73.8

Data expressed as frequency (No,%) , *: signifi cance <0.05.

Table 4: Allele frequencies of TGF-β1 (+869T/C), (+915G/C), IL-10 (− 1082 G/A), (− 
819 C/T), (− 592 A/C) and IL-6 (− 174 G/C) in patients with T1D and in normal healthy 
controls.

Polymorphism Allele
Control T1D 

p(n = 80) (n = 80)
No. % No. %

TGF-β1 codon 10
C 84 52.5 81 50

>0.05
T 76 47.5 79 50

TGF-β1 codon 25
C 3 1.9 27 16.9

<0.001*
G 157 98.1 133 83.1

IL-6
C 31 20.6 54 32.5

>0.05
G 129 79.4 106 67.5

IL-10 -1082
A 64 40 81 52.5

>0.05
G 96 60 79 47.5

IL-10 -819
C 144 89.4 109 64.4

<0.001*
T 16 10.6 51 35.6

IL-10 -592
A 16 10.6 51 35.6

<0.001*
C 144 89.4 109 64.4

Data expressed as frequency (No,%) , *: signifi cance <0.05.
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the disease genes in various ways among various ethnic groups 
may help to explain these discrepancies in fi ndings. 

Our fi ndings contrast with those from one of the earliest 
case-control studies on the IL-6-174 G/C SNP, which identifi ed 
GG homozygous as those at increased risk of T1D [41]. In the 
current study, carriers of the IL-6-174 C/C genotype were at 
increased risk of developing T1D. However, our fi ndings are 
consistent with fi ndings from a Polish population [42] and a 
sizable UK case-control study [43], which both demonstrated 
a marginally positive association between T1D and the -174 C 
allele. The pleiotropic cytokine IL-6 plays critical regulatory 
and pro-infl ammatory roles in the pathogenesis of a number 
of autoimmune diseases, including rheumatoid arthritis 
and infl ammatory bowel disease as acute infl ammation is 
accompanied by changes in the concentrations of Acute Phase 
Proteins (APPs), which are controlled by IL-6 [44-46]. 

The role in the pathogenesis of T1D has not been established, 
and no concrete proof has been presented that it has harmful 
or even cytotoxic effects on pancreatic cells [45]. Some studies 
have also shown that IL-6 has a protective effect against 
cytokine-induced cell death and functional impairment in 
NOD mice, which have a genetic susceptibility to autoimmune 
diabetes [47,48]. Confl icting evidence has been presented 
regarding the association between IL-6 SNPs and T1D based on 
genetic studies [43,45]. The precise mechanism by which this 
polymorphism contributes to the genetic determination of T1D 
is still unclear, largely due to our incomplete understanding of 
the role of IL-6 in the pathogenesis of T1D and the functional 
impact of the -174 G/C SNP. 

We found a signifi cant increase in polymorphisms in the 
diabetic group’s TGF-1 and IL-6 genes, which are linked 
to a noticeable alteration in the cytokine production genes. 
This change in cytokine production from high to low is an 
indication of the intricate interplay between genetic factors 
and the immune response. The results of our study indicate 
that variations in the TGF-1 and IL-6 genes may be extremely 
important in determining a person’s susceptibility to Type 1 
Diabetes Mellitus. Despite the fact that our fi ndings did not 
fi nd a signifi cant correlation with IL-10 polymorphisms. The 
limitations of our study included the relatively small sample 
size, lack of diversity, and lack of direct measurements of 
serum cytokine levels along with gene polymorphism data 
that could have provided a more in-depth understanding of 
the mechanistic relationships between genetics, cytokine 
production, and disease. 

Longitudinal studies that follow people over time can be 
used to track the development of genetic markers and how 
they relate to the onset of Type 1 Diabetes Mellitus. Investigate 
interactions between genes and the environment to understand 
how particular environmental elements may alter the infl uence 
of genetic variations on disease susceptibility. carrying out a 
thorough investigation into all genes that encode cytokines 
associated with Type 1 Diabetes Mellitus and their interactions 
with one another.

Conclusion

Our fi ndings supported an association between 
susceptibility to T1D and the TGF-1 CC/GC, TGF-b1 TT/GG. 
changed to TGF-1  C/T allele at codon+869 (codon 10) did not 
signifi cantly differ between T1D patients and controls while 
one or two copies of the C allele at codon +915 (codon 25) may 
increase a person’s risk of developing T1D by lowering the level 
of the anti-infl ammatory TGF-1. A single polymorphism, -174 
C/C with low IL-6 production may be a risk factor for T1D in 
Saudi children. Our fi ndings emphasize the importance of the 
cytokine SNPs in regulating autoimmune diseases, especially 
T1D, in the studied population. These results might also spur 
other researchers and investigators to launch further studies 
on larger cohorts to confi rm the impact of these SNPs on the 
release of these cytokines and the subsequent effects on the 
prevalence of T1D.
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